Lab 2: Linked List to Array Conversion in
RISC-V

Saumya Patel

UNIVERSITY OF ALBERTA
Department of Computing Science

July 31, 2025



Contents

Introduction

Background: Linked Lists

Visual Representation

Lab Task
Evaluation and Submission

Additional Information



Introduction

In this lab, you will develop a RISC-V assembly subroutine
that:

» Converts a singly linked list into an array.
= Locates the index of a specified target element during the
conversion.

This exercise strengthens your understanding of data structures,
memory management, and assembly programming.



What is a Linked List?

= A linear data structure where each element (node) is
dynamically allocated and stored in non-contiguous
memory.
= Each node contains:
= Data: The value stored in the node.
= Pointer: The address of the next node.
» The last node uses a sentinel value (e.g., 0_) to indicate
the end of the list.



Linked List: Definition and Use Cases

Definition
A linked list is a sequence of nodes where each node stores data
and a reference to the next node.

» Preferred when:
> The number of elements is not known in advance.
= Frequent insertions and deletions are expected, especially in
the middle or beginning.
= Arrays provide faster random access, but are less efficient
for resizing or inserting elements.



Memory Layout of Linked Lists

= Nodes are not stored contiguously in memory.

» Each node is dynamically allocated using malloc in risc-v
(dont worry about it, its handled in Common.s).

» Structure of a node:

= The final node’s pointer is set to a sentinel value



Visual Representation

Singly Linked List Layout in Memory

0x80008000 |
11 data next
11 OX7FFF8120
Ox7FFF8120)|
33 data next
33 0x9000F08C
0X9000F08C|
7 data next
77 0




Lab Task Overview

» Implement a RISC-V subroutine Convert that:

= Traverses a singly linked list.

= Copies each node’s data into an array.

= Locates the last occurrence of a target value.
= Stores all node data followed by the sentinel.



Detailed Requirements

= Traverse the linked list from the head node.
= Store each node’s data in consecutive array positions.

» Handle Sentinel: When the pointer field equals the
sentinel value (0), stop traversal and store the sentinel in
the next array element.

» Find Target: During traversal, compare each node’s data
with the target value. If found, record its index.

» Return: If the target is not found, return -1.



Test Case Format

» Test cases are plain text files ending with . txt and must
follow the format below:

LT
[sequence of integers representing the linked list]

» Where:

= L: Length of the linked list.
= T: Target value to find.

Example:

115
57234512345



Input Guarantees

» The linked list contains between '0 and 50 elements.
= All data values are positive integers.

= The linked list is never empty.

= The target value is a positive integer.



Subroutine Specification

Convert Function
Arguments:

» a0: pointer to output array
= al: pointer to head of linked list
= a2: pointer to target value
Return Values:
= a0: 1 if target found, otherwise o
= al: index of target element, or —1 (-1 if not found)

Effect: Converts the linked list to an array and locates the
target element.



Marking Guide

y

y

20%: Code cleanliness, readability, and comments.
15%: Correctly indexing the next node.

15%: Correctly inserting elements into the array.
10%: Correctly finding the target element.

20%: Correct handling of the presence/absence of the
target(target found/not found, moving correct values into
the registers)

20%: Correctly moving values into specified registers.



Submission Instructions

= Submit only Convert.s (your subroutine implementation).
= Do not any labels that exist in the Common.s file

» Do not modify .include "common.s" or the common.s file.
= Ensure your code works on the lab machines.

» Make sure to follow the correct program writing
style and maintain code comments and cleanliness



Additional Information

» All instructions for the lab are provided in the assignment.

» For more on screen updates and visualizations, see the lab
PDF.

= Focus on correct traversal, data copying, and target search
in your subroutine.



Conclusion

» Linked lists are flexible for dynamic data but require
sequential access.

= Arrays allow fast random access but are less flexible for
resizing.

= This lab builds skills in data structure manipulation and
assembly programming,



	Slide 1: Lab 2: Linked List to Array Conversion in RISC-V
	Slide 2: Contents
	Slide 3: Introduction
	Slide 4: What is a Linked List?
	Slide 5: Linked List: Definition and Use Cases
	Slide 6: Memory Layout of Linked Lists
	Slide 7
	Slide 8: Lab Task Overview
	Slide 9: Detailed Requirements
	Slide 10: Test Case Format
	Slide 11: Input Guarantees
	Slide 12: Subroutine Specification
	Slide 13: Marking Guide
	Slide 14: Submission Instructions
	Slide 15: Additional Information
	Slide 16: Conclusion

