
Lab 2: Linked List to Array Conversion in

RISC-V

Saumya Patel

UNIVERSITY OF ALBERTA
Department of Computing Science

July 31, 2025

Contents

Introduction

Background: Linked Lists

Visual Representation

Lab Task

Evaluation and Submission

Additional Information

Introduction

In this lab, you will develop a RISC-V assembly subroutine
that:

► Converts a singly linked list into an array.

► Locates the index of a specified target element during the

conversion.

This exercise strengthens your understanding of data structures,
memory management, and assembly programming.

What is a Linked List?

► A linear data structure where each element (node) is
dynamically allocated and stored in non-contiguous
memory.

► Each node contains:

► Data: The value stored in the node.

► Pointer: The address of the next node.

► The last node uses a sentinel value (e.g., −1) to indicate
the end of the list.

0

Linked List: Definition and Use Cases

Definition
A linked list is a sequence of nodes where each node stores data
and a reference to the next node.

► Preferred when:

► The number of elements is not known in advance.

► Frequent insertions and deletions are expected, especially in

the middle or beginning.

► Arrays provide faster random access, but are less efficient
for resizing or inserting elements.

Memory Layout of Linked Lists

► Nodes are not stored contiguously in memory.

► Each node is dynamically allocated using malloc in risc-v
(dont worry about it, its handled in Common.s).

► Structure of a node:

► The final node’s pointer is set to a sentinel value (e.g., −1).

Visual Representation

Lab Task Overview

► Implement a RISC-V subroutine Convert that:

► Traverses a singly linked list.

► Copies each node’s data into an array.

► Locates the last occurrence of a target value.

► Stores all node data followed by the sentinel.

Detailed Requirements

► Traverse the linked list from the head node.

► Store each node’s data in consecutive array positions.

► Handle Sentinel: When the pointer field equals the
sentinel value (−1), stop traversal and store the sentinel in
the next array element.

► Find Target: During traversal, compare each node’s data
with the target value. If found, record its index.

► Return: If the target is not found, return −1.

(0)

Test Case Format

► Test cases are plain text files ending with . t x t and must
follow the format below:

L T

[sequence of i nte gers representing the li nked l i s t]

► Where:

► L: Length of the linked list.

► T: Target value to find.

Example:

11 5

5 7 2 3 4 5 1 2 3 4 5

Input Guarantees

► The linked list contains between 10 and 50 elements.

► All data values are positive integers.

► The linked list is never empty.

► The target value is a positive integer.

Subroutine Specification

Convert Function
Arguments:

► a0: pointer to output array

► a1: pointer to head of linked list

► a2: pointer to target value

Return Values:

► a0: 1 if target found, otherwise 0

► a1: index of target element, or –1 (–1 if not found)

Effect: Converts the linked list to an array and locates the
target element.

Marking Guide

► 20%: Code cleanliness, readability, and comments.

► 15%: Correctly indexing the next node.

► 15%: Correctly inserting elements into the array.

► 10%: Correctly finding the target element.

► 20%: Correct handling of the presence/absence of the
target(target found/not found, moving correct values into
the registers)

► 20%: Correctly moving values into specified registers.

Submission Instructions

► Submit only Convert.s (your subroutine implementation).

► Do not any labels that exist in the Common.s file

► Do not modify . i nclude "common.s" or the common.s file.

► Ensure your code works on the lab machines.

► Make sure to follow the correct program writing
style and maintain code comments and cleanliness

Additional Information

► All instructions for the lab are provided in the assignment.

► For more on screen updates and visualizations, see the lab
PDF.

► Focus on correct traversal, data copying, and target search

in your subroutine.

Conclusion

► Linked lists are flexible for dynamic data but require
sequential access.

► Arrays allow fast random access but are less flexible for
resizing.

► This lab builds skills in data structure manipulation and
assembly programming.

	Slide 1: Lab 2: Linked List to Array Conversion in RISC-V
	Slide 2: Contents
	Slide 3: Introduction
	Slide 4: What is a Linked List?
	Slide 5: Linked List: Definition and Use Cases
	Slide 6: Memory Layout of Linked Lists
	Slide 7
	Slide 8: Lab Task Overview
	Slide 9: Detailed Requirements
	Slide 10: Test Case Format
	Slide 11: Input Guarantees
	Slide 12: Subroutine Specification
	Slide 13: Marking Guide
	Slide 14: Submission Instructions
	Slide 15: Additional Information
	Slide 16: Conclusion

